The cysteine protease dipeptidyl aminopeptidase 3 does not contribute to egress of Plasmodium falciparum from host red blood cells
نویسندگان
چکیده
The ability of Plasmodium parasites to egress from their host red blood cell is critical for the amplification of these parasites in the blood. Previous forward chemical genetic approaches have implicated the subtilisin-like protease (SUB1) and the cysteine protease dipeptidyl aminopeptidase 3 (DPAP3) as key players in egress, with the final step of SUB1 maturation thought to be due to the activity of DPAP3. In this study, we have utilized a reverse genetics approach to engineer transgenic Plasmodium falciparum parasites in which dpap3 expression can be conditionally regulated using the glmS ribozyme based RNA-degrading system. We show that DPAP3, which is expressed in schizont stages and merozoites and localizes to organelles distinct from the micronemes, rhoptries and dense granules, is not required for the trafficking of apical proteins or processing of SUB1 substrates, nor for parasite maturation and egress from red blood cells. Thus, our findings argue against a role for DPAP3 in parasite egress and indicate that the phenotypes observed with DPAP3 inhibitors are due to off-target effects.
منابع مشابه
Falstatin, a Cysteine Protease Inhibitor of Plasmodium falciparum, Facilitates Erythrocyte Invasion
Erythrocytic malaria parasites utilize proteases for a number of cellular processes, including hydrolysis of hemoglobin, rupture of erythrocytes by mature schizonts, and subsequent invasion of erythrocytes by free merozoites. However, mechanisms used by malaria parasites to control protease activity have not been established. We report here the identification of an endogenous cysteine protease ...
متن کاملGlobal Profiling of Proteolysis during Rupture of Plasmodium falciparum from the Host Erythrocyte*
The obligate intracellular parasite pathogen Plasmodium falciparum is the causative agent of malaria, a disease that results in nearly one million deaths per year. A key step in disease pathology in the human host is the parasite-mediated rupture of red blood cells, a process that requires extensive proteolysis of a number of host and parasite proteins. However, only a relatively small number o...
متن کاملThe Plasmodium falciparum pseudoprotease SERA5 regulates the kinetics and efficiency of malaria parasite egress from host erythrocytes
Egress of the malaria parasite Plasmodium falciparum from its host red blood cell is a rapid, highly regulated event that is essential for maintenance and completion of the parasite life cycle. Egress is protease-dependent and is temporally associated with extensive proteolytic modification of parasite proteins, including a family of papain-like proteins called SERA that are expressed in the pa...
متن کاملNpgrj_nchembio_70 203..213
Newly replicated Plasmodium falciparum parasites escape from host erythrocytes through a tightly regulated process that is mediated by multiple classes of proteolytic enzymes. However, the identification of specific proteases has been challenging. We describe here a forward chemical genetic screen using a highly focused library of more than 1,200 covalent serine and cysteine protease inhibitors...
متن کاملNew Stages in the Program of Malaria Parasite Egress Imaged in Normal and Sickle Erythrocytes
The apicomplexan parasite Plasmodium falciparum causes malignant malaria. The mechanism of parasite egress from infected erythrocytes that disseminate parasites in the host at the end of each asexual cycle is unknown. Two new stages of the egress program are revealed: (1) swelling of the parasitophorous vacuole accompanied by shrinkage of the erythrocyte compartment, and (2) poration of the hos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2018